
About Infosec

At Infosec, we believe knowledge is the most

powerful tool in the fight against cybercrime.

We provide the best certification and skills

development training for IT and security

professionals, as well as employee security

awareness training and phishing simulations.

Learn more at infosecinstitute.com.

Connect with us

Stay up to date with Infosec

© INFOSEC RESOURCES 2020

AUTHOR

Dejan
Lukan

Dejan Lukan is a security researcher for InfoSec Institute and penetration tester from Slovenia. He is very interested

in finding new bugs in real world software products with source code analysis, fuzzing and reverse engineering. He

also has a great passion for developing his own simple scripts for security related problems and learning about

new hacking techniques. He knows a great deal about programming languages, as he can write in couple of

dozen of them. His passion is also Antivirus bypassing techniques, malware research and operating systems, mainly

Linux, Windows and BSD. He also has his own blog available here: http://www.proteansec.com/.

3 responses to “The Basics of IDA Pro”

 Luc says:
December 12, 2012 at 3:52 am
very nice and useful! A quick question, on ida site there is written “you will not be able to save your work, it will time out after
some use, it will not disassemble itself.”, seems that (actually is possible to download 6.3) it expired as written above, Could
you confirm? if yes i can save time and avoid to download the limited edition.
thanks
Luc
Reply

 dejan says:
December 18, 2012 at 2:17 pm
Hi, yes, it’s better to download the limited edition, which has most of the functions available if you want to disassemble x86
binaries.
Reply

 Alina says:
October 4, 2014 at 10:06 am
It’s the only straightforward IDA manual I could find on Google. I wish it contained some examples of malicious code
detection.
Reply
Leave a Reply
Your email address will not be published. Required fields are marked *

Comment
Name *
Email *
Website
Save my name, email, and website in this browser for the next time I comment.

 

Post Comment

Follow @infosecedu

PREV: IDA PROGRAM PATCHING

1. Introduction

IDA Pro is the best disassembler in the business. Although it costs a lot, there’s still a free

version available. I downloaded IDA Pro 6.2 limited edition, which is free but only supports

disassembly of x86 and ARM programs. Otherwise, it supports a myriad of other platforms,

which we won’t need here.

When IDA Pro is first loaded, a dialog box will appear asking you to disassemble a new file,

to enter the program without loading any file, or to load the previously loaded file. This can

be seen below:

We’ll choose to disassemble a

new file. We’ll select the

reverse Meterpreter

executable that we previously

created with Metasploit

framework. We can also

disable the “Display at startup”

checkbox in the bottom of

the window presented on the

picture above so that IDA Pro

runs only when we want to

use it. I guess whenever we’ve

been working on some file

already, it’s best to click on

the Previous button to open one of the files we’ve been working on in the past.

Upon opening the executable, IDA Pro will automatically recognize the file format of the

executable: in our case, it is a PE Windows executable. It will also recognize the

architecture the executable was compiled against. This can be seen on the picture below,

where the Processor Type of “Intel 80×86 processors: metapc” is detected. The processor

type specifies the processor module that will be used to disassemble the executable. The

processor modules are located under IDA Pro’s procs directory; in my case, the following

modules are available: arm.ilx and pc.ilx. Usually, the executable architecture and

processor type are recognized successfully and we won’t need to change that in the

presented window.

The list of file

types generated

from the list of

potential file

types is located

in IDA Pro’s

loaders

directory. IDA

Pro will

automatically

present the file

types that can

be used to work

with the loaded

file. Any file

loader that can

recognize the

analyzed file will

be presented

and we will be

able to choose

any of them. On my version of IDA Pro, the loaders directory contains the following files:

dbg.llx, elf.llx, macho.llx, pe.llx. In our case, it was the pe.llx that was able to recognize the

analyzed file and display itself as the “Portable executable for 80386” option.

After we click on the OK button, IDA Pro will load a file as if it was loaded by the operating

system itself.

2. Database Files

Upon opening a new file to analyze with IDA Pro, it analyzes the whole executable file

and creates an.idb database archive. The .idb archive contains four files [1]:

name.id0 – contains contents of B-tree style database,

name.id1 – contains flags that describe each program byte,

name.nam – contains index information related to named program locations,

name.til – contains information about local type definitions

All of these file formats are proprietary and can only be used in IDA. Once the .idb

database has been created for a specific executable, IDA won’t need to analyze the

program again when we load it later. Moreover, IDA doesn’t even require the executable

anymore; we can now work with just the .idb file. This is a useful feature that can be used

to pass around .idb files to other researchers without the malicious executable. Therefore,

IDA can analyze the executable without the actual executable, and with only the database

archive file.

ETHICAL HACKING TRAINING – RESOURCES (INFOSEC)

Anytime we’re trying to close the currently open.idb database (the currently analyzed

executable), IDA asks us if we would like to save changes to the disk. We can choose from

the following options:

Don’t pack database: flush changes to .id0, id1, nam and til databases and don’t

create .idb file.

Pack database (Store): archives the .id0, id1, nam and til into the .idb archive. Note

that the .idb of the previous session is overwritten.

Pack database (Deflate): the same as the previous option, except the database files

are compressed in the .idb archive.

Collect garbage: deletes any unused memory pages from the database. This can be

useful if we want to create a smaller database .idb file.

Don’t save the database: we can pick this option if we don’t want to save the

changes that we have made.

If we are using the demo version of IDA, we won’t be able to save our work, since that

function is disabled. If we want to use that option, we can either download IDA Pro 5.0,

which is free but outdated, or pay for our own IDA Pro version.

If we saved our work, we can open the database anytime later on and it will load really fast,

because it doesn’t need to perform the whole analysis of the executable file like the first

time. This saves us time and money when analyzing malicious files.

We need to keep in mind that whenever IDA analyzes the executable, it must do quite a

lot of work, like parsing the executable’s header (in our case, a PE executable header),

parsing and creating sections for various executable’s file sections that it may have (.data,

.code, etc), identifying the entry point of the executable where the code will start

executing if we run it, etc.

During that time, IDA will also load and parse the actual code instructions of the

executable file into the assembly instructions of the selected processor module. Those

assembly instructions are then also showed to the user for analysis. But IDA doesn’t stop

there; it can also scan the generated assembly instructions to figure out additional

information about the executable, like the compiler which was used to compile the

executable, the function’s arguments, the function’s local variables, etc.

All in all, IDA can be incredibly helpful in analyzing an executable by providing various

information that we normally would have had to figure out ourselves.

3. Graphical User Interface

The most important and basic part of IDA Pro that we need to understand is its graphical

user interface, since we’ll probably be using it a lot, as otherwise we wouldn’t be reading

this article. So far, after we’ve loaded the meterpreter.exe executable, IDA will look like the

picture below:

We can see the menu area that contains the menu items File, Edit, etc. This can be used to

do anything that is possible to do with IDA; it’s just a matter of finding the right option we

would like to do. A shortcut for various actions is the toolbar area that provides shortcuts

for the same actions we could find in the Menu itself. We can add and remove toolbars by

using the View – Toolbars menu option. The next thing is an overview navigator, which is

also presented on the picture below for clarity:

It represents the whole

memory space used by the

analyzed application. If we right-click on it, we can zoom in and out to represent smaller

chunks of memory. We can also see that different colors are used for different parts of the

memory; this depends on the type of data or code being loaded into that area. At the very

beginning of the navigator, we can see a very small yellow arrow that points to the location

where we’re currently at in the disassembly window.

On the picture below, we’re presenting the different views on the gathered data. The data

was gathered on the initial analysis of the executable and now we’re merely asking IDA to

return a specific type of data in its own data view.

We can see that there are a lot of data views available and all of them contain one or more

specific information that was gathered from the loaded executable. To open a specific

data view, we can go to View – Open Subviews and choose the appropriate view we would

like to show. We can also switch back to the default view by clicking on Windows – Reset

desktop.

The main view is the disassembly window where we can see the actual disassembled

code of the analyzed executable. We can switch between the graph and the listing view

that actually represents the same program. The graph view can be used if we want to

quickly figure out the execution flow of the current function and the listing view can be

used when we want to see the actual assembly instructions.

The graph overview of the Meterpreter executable is presented on the picture below:

This is just an overview of the

program for easier navigation of

the piece of code that we would

like to be analyzing. In the picture

above, we clicked on the start of

the program (note the dotted

rectangular square). But as it’s on

the graph overview, we can’t see

the actual code that will get

disassembled. There’s an

additional window, the graph

view window, which goes

together with the graph preview

window where we can see the

disassembled code presenting

the corresponding code as in the

graph preview, shown on the picture below:

On the left side is a window presenting the actual disassembled code of the beginning of

the program. On the right, we can see the overview graph presenting the same beginning

of the program. On the graph overview, the program is broken down into logical blocks,

where each block is presenting a jump target (as defined in the assembly code). From the

graph overview we can also see the logic the program uses while executing. In our case,

we can see that there are no decision branches and the program is executed from start to

finish without any decisions. The arrows between the blocks can be green, red or blue. In

our case, all of the arrows are blue because there’s no branching being done. If the

program is deciding something at some point and there are two possible branches the

execution can go into, we will have a green arrow to note what is taken by default and a

red arrow for what isn’t taken by default. The graph overview always presents the whole

current function of the program, which makes it easy to go to a specific point in the

program if the program is overly complicated and the navigation in the listings view

becomes difficult.

The listing view of the Meterpreter executable is presented on the picture below:

Let’s also present another listing window that has a little more going on than the one on

the picture above.

We can switch between different locations in listing view or within the graph view; both of

the views will represent the same code at any given time. If we look at the graph and the

listings view more carefully, we can see that the listings view also presents the virtual

addresses where certain instructions are located, while the graph view hides those. This is

because the graph view can be presented more clearly with less information, so virtual

addresses are hidden. Nevertheless, if we would like to show those addresses, we can

enable them in Options – General – Disassembly and enable the “Line prefixes” option.

Those preferences can be seen on the picture below:

On the left side of the listing window, we can see different arrows that show us the

branching in the analyzed program. On the line 0x0040134B, we can see the program will

jump to the location 0x00401337 and continue the execution from there.

The arrays are of different colors and can be solid or dashed. The solid lines represent

unconditional jumps, while the dashed lines represent conditional jumps. In our example,

the red line is solid, because the instruction located at that address uses the unconditional

instruction jmp.

IDA pro can also figure out the arguments of the function in question. We can’t see any

function parameters on the picture above but we can see the comments noted with a ‘;’ at

the end of some of the lines. Each of the comments lets us know that another instruction

is referencing that place in the code. In our case, we can see a cross-reference comment “;

CODE XREF: .text:0040134B”, which lets us know that the instruction at address

0x0040134B is referencing the current address. So though we already know that the

program is jumping from location 0x0040134B to 0x00401337, we often won’t be able to

tell so easily, which is why the cross-references can be very helpful.

When viewing the

instructions in

graph mode

afterwards, the

virtual addresses

will be enabled.

This can be seen on

the picture below

where we

presented the

same picture as

above, just with

virtual addresses

enabled:

In the IDA’s default

window, there’s an additional window that is used to display different messages

generated by IDA. Those messages can be outputted by any kind of plugin in IDA or by IDA

itself. The messages are there to inform us of different things regarding the analysis of the

executable sample. For clarity, the message view is presented below:

4. Other Views

If we go inside View – Open Subviews, we can see many windows that can be shown or

hidden and provide us with additional functionality. These can be seen on the picture

below:

If we go inside the Windows menu

option, we can see the currently open

windows which we can quickly bring

to the front by using the Alt-Num

shortcut, where Num is a number.

The currently open windows can be

seen on the picture below with their

appropriate shortcuts:

IDA

View-A

We

already

presented IDA View-A, which is

simply the code disassembly of the program.

Hex View-A

The hex view window presents the hex representation of the program. The first hex

window is always synchronized with the disassembly view, so it always presents the same

virtual addresses. If some bytes are highlighted in either one of the windows they are also

highlighted in the other window as well.

Let’s first select some text in the IDA View-A. On the picture below, we selected the text

“Send request failed!”:

The corresponding Hex View-A will have to have the same text selected as can be seen

below:

If we right-click on the Hex View-A, we can also disable the synchronization of the hex

view with the disassembly view. That functionality can be seen on the picture below:

Exports

The

Exports

window

lists the exported function that can be used by outside files. Exported functions are most

common in shared libraries as they provide the basic building block APIs that can be used

by programs running on the system to do basic operations. In our case, there is only one

export function named start, which is the executable’s entry point.

Imports

The Imports window lists all

of the functions that the

executable calls that are not

contained in the executable

itself. This is a common

scenario present when the

executable is using shared

DLLs to do its job. The

Meterpreter executable contains the following imported functions:

The imports

window lists

the virtual

address of

the function,

its name, and

the DLL to

which it

belongs to.

We need to

keep in mind

that the

imports

window will

list only

those shared

functions

that are

loaded by a

dynamic

loader at

runtime, but the executable can load dynamic functions by itself using a function call like

LoadLibrary.

Names window

The names window displays all the names found within the executable program. A name

is simply an alias for a certain virtual address. Usually, each referenced location in the

executable will have a name. Referenced locations are named locations where we transfer

the execution at branch/call time and also the variables, where we read the data from or

write the data to. If there are symbols contained in the executable’s symbol table, they are

appended to the list in the Names window.

Throughout the disassembled code, we can also notice the names that do not appear in

the names window; those are automatically generated by IDA itself. This happens because

the symbol table in the executable doesn’t contain the relevant symbol, which could be

inherited. The automatically generated names usually have one of the following prefixes

followed by their corresponding virtual address: sub_, loc_, byte_, word_, dword_ and unk_.

We can use names to quickly jump to various locations inside the program executable

without having to remember their corresponding virtual addresses. The names window for

the Meterpreter executable can be seen on the picture below:

Let’s take a look at the

start name that points to

the 0x004012A7 virtual

address location. Also, take

a look at the same

memory location in the

disassembly view; we can

see that the start name is

indeed located at the

specified location as can

be seen on the picture below:

We also need to mention different colors and letters present in each line in the Names

window. Different letters mean the following [1]:

F (Function): regular function, which is not a library function.

L (Library): library function that can be recognized with different signatures that are

part of IDA. If the matching signature is not found, the name is labeled as a regular

function.

I (Imported): imported name from the shared library. The code from this

function/name is not present in the executable and is provided at run time, whereas

the library function is embedded into the executable.

C (Code): named code that represent program locations that are not part of any

function, which can happen if the name is a part of the symbol table, but the

executable never calls this function.

D (Data): named data locations that are usually global variables.

A (Ascii): ASCII string data that represents a string terminated with a null byte in the

executable.

In the Meterpreter executable, we can see that the start name is a regular function, which

means it’s an actual function in the executable. There are also quite a lot of ASCII strings

represented by the letter A. This is normally the case for every executable, since each

executable must contain its share of strings. But the Meterpreter executable also uses

imported (I) entries that correspond to the imported library functions, which are also

needed if we want to call functions outside of the executable (located in shared libraries).

Functions window

The functions window lists all the functions present in the executable, even though their

name was automatically assigned by IDA itself. The names window doesn’t do that by

default and it also displays other names. The functions window is used solely to display the

name of the functions. On the picture below, we can see all the functions used in the

Meterpreter reverse executable:

We can see that the function start is located in the .text segment of the executable, that it

starts at the 0x004012A7 virtual address, is 0x9D bytes long, and returns to the caller (flag

R). The explanation of all of the flags can be found if we right-click on the function on the

function window and select “Edit function.” The window presented on the picture below

will pop up showing the explanation of the flags:

The flags are explained as

follows:

– R: whether the function returns

to the caller

– F: whether it’s a far function

– L: whether it’s a library function

– S: whether it’s a static function

Strings window

The stings window presents the

strings that were found by the

executable. Keep in mind that

every time we open the strings

window, IDA rescans the whole binary and displays them; it doesn’t keep them stored in

one of the database archives. We can see the strings window with the strings found of the

Meterpreter executable on the picture below:

We can control which

strings will be

presented to us by

right-clicking on the

strings window and

choosing Setup, where

we can change various

settings that

correspond directly to

how IDA searches for

strings. The setup

window can be seen

on the picture below:

We can see that IDA

can scan for various kinds of strings, but defaults

to scanning for C 7-bit strings by default. On the

picture above, we can also see that the

minimum length of the string for it to be

displayed in the strings window is 5 characters.

We will often find ourselves changing the

“allowed string types” to scan for other strings as

well, which is good if we have a hunch that the

executable uses other kinds of strings.

The “display only defined strings” option will

cause IDA to display only named strings and

hide all the others. If we enable “ignore

instructions/data definitions,” IDA will also scan

for strings in the code and data sections of the

executable. This is a good option if we want to

find out if there are any strings embedded in the actual code of the executable.

Structures

The structures window lists the data structures that could be found in the binary. IDA uses

the functions and their known arguments to figure out whether there’s a data structure

present in the executable or not. In the case of the Meterpreter reverse executable, IDA

didn’t find any structures in the executable, which can be seen on the picture below:

Whenever IDA finds a structure, we can examine it by double-clicking on it. Of course, we

can also check out the data structure on the Internet, but why would we do that if IDA

already provides us with the information we need.

Enums

The enums window lists all the enum data types found in the executable. In the case of

reverse Meterpreter executable, IDA didn’t find any enum data types as can be seen on the

picture below:

Segments

The segments window lists all the sections of the binary. In the case of reverse Meterpreter,

the sections are presented on the picture below:

We can see four sections here: .text, .idata, .rdata and .data. The .text section starts at virtual

address 0x00401000 and ends at the virtual address 0x0040C000. The R/W/X columns

are flags that mean: Read/Write/eXecute. The .text section has the Read and eXecute flags

set, which is mandatory for the executable to be able to actually execute. It would be

worrying if the .text section also has the Write flag set, which would indicate the possibility

of self-modifying code that is common in viruses and worms.

Signatures

Signatures are used to determine the compiler used for the executable by comparing a lot

of known compiler specific signatures to the current executable. IDA will try to apply all of

the signatures taken from one of the files in the sigs directory and apply them to the

executable. The useful thing about signatures is that the functions will already be

recognized and we won’t need to reverse engineer the standard functions that are already

known, so we can focus more on the actual reversing of the program itself. In the case of

reverse Meterpreter executable, IDA isn’t able to determine the compiler used to compile

the executable, so the warning below is shown:

We can click on the “Add

signature now” button to

select the signatures we

would like to forcibly apply to

the executable. A list of

available library modules can

be seen below:

5. Conclusion

IDA Pro is a very good disassembler that should be used in every reverse engineering

scenario. We’ve seen the basic windows that IDA Pro uses and introduced them on the

reverse Meterpreter executable. If we want to master IDA Pro, it’s better to completely

understand what we’ve written in this tutorial before moving on to the more advanced

stuff.

References

[1] Chris Eagle, The IDA Pro Book: The unofficial guide to the world’s most popular

disassembler.

Earn your CEH, guaranteed!
Complete the form below to receive course pricing.

FIRST NAME * LAST NAME *

EMAIL * PHONE *

ORGANIZATION INTERESTED IN STUDENT FINANCING?

*

WHO WILL FUND YOUR TRAINING?

* TRAINING BUDGET

*

Cyber Work: How
to become a…



MITRE ATT&CK:
Shortcut

modification



Network Traffic
Analysis for IR:

UDP…



MITRE ATT&CK:
External remote

service



four − =

IDA PRO - PART 4

The Basics of IDA Pro

JUMP TO SELECT POST SECTION
 Tweet

reddit

Share 5

Like

Join our newsletter

Get the latest news, updates & offers straight

to your inbox.

ENTER YOUR EMAIL SUBSCRIBE

TOPICS CERTIFICATIONS CYBERSECURITY CAREERS VIDEOS CONTRIBUTORS ABOUT INFOSEC

https://twitter.com/intent/follow?original_referer=https%3A%2F%2Fresources.infosecinstitute.com%2Fbasics-of-ida-pro-2%2F&ref_src=twsrc%5Etfw®ion=follow_link&screen_name=infosecedu&tw_p=followbutton
https://twitter.com/intent/tweet?hashtags=infosec&original_referer=https%3A%2F%2Fresources.infosecinstitute.com%2Fbasics-of-ida-pro-2%2F&ref_src=twsrc%5Etfw&related=infosecedu&text=The%20Basics%20of%20IDA%20Pro&tw_p=tweetbutton&url=https%3A%2F%2Fresources.infosecinstitute.com%2Fbasics-of-ida-pro-2%2F&via=InfosecEdu
https://www.reddit.com/submit?url=https%3A%2F%2Fresources.infosecinstitute.com%2Fbasics-of-ida-pro-2%2F
https://www.reddit.com/submit?url=https%3A%2F%2Fresources.infosecinstitute.com%2Fbasics-of-ida-pro-2%2F
https://www.reddit.com/submit?url=https%3A%2F%2Fresources.infosecinstitute.com%2Fbasics-of-ida-pro-2%2F
https://www.reddit.com/submit?url=https%3A%2F%2Fresources.infosecinstitute.com%2Fbasics-of-ida-pro-2%2F

